US009465618B2

a2 United States Patent

Kalogeropulos et al.

US 9,465,618 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHODS AND SYSTEMS FOR 8,005,978 B1 82011 Duffie, III et al.
OPTIMALLY SELECTING AN ASSIST UNIT 9,361,116 B2* 6/2016 Ben-Kiki GO6F 9/3881
2003/0225816 Al 12/2003 Morrow et al.
: . 2006/0031818 Al* 2/2006 Poffetal. ... 717/114
(71) Applicant: &%ﬁgggi%ﬁ?ﬁiﬁgggf&m CA 2008/0104610 AL* 5/2008 NOTtON ...occ..... GOGF 113419
(Us) 2008/0209245 Al* 82008 Becker GOGF 11/3024
713/322
(72) Inventors: Spiros Kalogeropulos, Redwood City, 2008/0271043 Al* 10/2008 Kim ..occcooervrrernenn GOG6F 11/3423
CA (US); Partha Tirumalai, Redwood 718/108
City, CA (US) 2009/0217286 Al 8/2009 Schmidbauer et al.
2009/0282214 Al* 112009 Kuesel GOGF 9/30036
(73) Assignee: Oracle International Corporation, 2011/0131430 Al* 6/2011 Krishnamurthy et al. ... 1330
Redwood City, CA (US)
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 192 days.
Brisebarre et al. “An Efficient Method for Evaluating Polynomial
(21) Appl. No.: 14/150,471 and Rational Function Approximations”, Jul. 2-4, 2008 IEEE, pp.
. 233-238; <http://ieeexplore.icee.org/stamp/stamp jsp?tp=&
(22) Filed: Jan. 8, 2014 arnumber—4580185&tag=1>"%
(65) Prior Publication Data (Continued)
US 2015/0193238 Al Jul. 9, 2015 . .
Primary Examiner — Thuy Dao
(51) Imt. ClL Assistant Examiner — Ben C Wang
GO6F 9/44 (2006.01) (74) Attorney, Agent, or Firm — Marsh Fischmann &
GO6F 9/38 (2006.01) Breyfogle LLP; Jonathon A. Szumny; Christopher B.
GO6F 9/48 (2006.01) Wherly
(52) US. CL
CPC oo, GOGF 9/3877 (2013.01); GO6F 9/48 (57) ABSTRACT
(2013.01); GO6F 8/10 (2013.01); GOGF 8/20 Methods, apparatuses, and systems that allow a micropro-
(2013.01); GO6F 8/24 (2013.01); GOGF 8/71 cessor to optimally select an assist unit (co-processor) to
(2013.01) reduce completion times for completing processing requests
(58) Field of Classification Search to execute functions. The methods, apparatuses, and systems
CPC ... GOGF 8/10; GO6F 8/20; GOGF 8/24; include assist unit hardware, assist unit management soft-
GO6F 8/71; GOG6F 11/3419 ware, or a combination of the two to optimally select the
See application file for complete search history. assist unit for completing a specific processing request. In
optimally selecting an assist unit, the methods, apparatuses,
(56) References Cited and systems calculate estimated times for completing the
processing request with conventional means and with assist
U.S. PATENT DOCUMENTS units. The times are then compared to determine the fastest
6,829,697 Bl 12/2004 Davis et al. time for completing a specific processing request.

7,551,617 B2* 6/2009 Eatherton HO4L 12/5693

370/392

18 Claims, 7 Drawing Sheets

RECEIVINGAT LEAST ONE PROCESSING

REQUEST ON A MICROPROCESSOR HAVING
MULTIPLE PROCESSING CORES AND AT LEAST
ONE ASSIST UNIT

DETERMINING A FUNCTION TYPE AND

FUNCTION SIZE FOR THE AT

LEAST ONE

PROCESSING REQUEST

FINDING AN AVAILABLE ASSIST UNIT BASED ON
‘THE FUNCTION TYPE AND FUNCTION SIZE

'ASSIGNING THE AT LEAST ONE PROCESSING
REQUEST TO THE AVAILABLE ASSIST UNIT

CALCULATING AN ASSIST UNIT COMPLETION
TIME TO COMPLETE THE AT LEAST ONE
PROCESSING REQUEST WITH THE AVAILABLE
ASSIST UNIT

FINDING AN AVAILABLE PROCESSING CORE

'CALCULATING A CONVENTIONAL COMPLETION
TIME TO COMPLETE THE AT LEAST ONE
PROCESSING REQUEST WITH THE AVAILABLE
PROCESSING CORE

DESIGNATING THE AVAILABLE ASSIST LNIT TO
‘COMPLETE THE AT LEAST ONE PROCESSING
REQUEST IF THE ASSIST UNIT GOMPLETION
‘TIME IS LESS THAN THE CONVENTIONAL
COMPLETION TME

DESIGNATING THE AVAILABLE PROCESSING
GORE TO COMPLETE THE AT LEAST
PROCESSING REQUEST IF THE ASSIST UNIT

‘GOMPLETION TIME IS GREATER THAN THE
‘CONVENTIONAL COMPLETION TIME.

US 9,465,618 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0154412 Al1* 6/2012 Harney GO6T 1/20
345/522
2013/0031553 Al* 1/2013 FRTT TN 718/100
2013/0111453 Al* 5/2013 GOGF 8/4452
717/161
2014/0189317 Al* 7/2014 Ben-Kiki GO6F 9/30079
712/220
2014/0189332 Al* 7/2014 Ben-Kiki GO6F 9/30145
712/244
2014/0189333 Al* 7/2014 Ben-Kiki GOG6F 9/3861
712/244
2015/0007196 Al* 1/2015 Tollcccovvieiiins GOG6F 9/5083
718/105
2015/0106816 Al* 4/2015 Dusanapudi et al. 718/102
2015/0331673 Al* 11/2015 Mihalcea GO6F 8/00
717/100

OTHER PUBLICATIONS
Krishna et al., “Hardware Acceleration in the IBM PowerEN
Processor—Architecture and Performance”, ACM, Sep. 2012, pp.

389-399; <http://dl.acm.org/citation.cfm?id=2370872
&CFID=630209785& CFTOKEN=65455725>.*

Sean Roberts, “Co-tuning of SW Specializers and HW Accelerators
within a CNN Application”, University of California at Berkeley,
May 2016, pp. 1-10; <http://www.eecs.berkeley.edu/Pubs/
TechRpts/2016/EECS-2016-53.pdf>.*

Balakrishnan et al., “Energy-efficient Mapping and Scheduling of
Task Interaction Graphs for Code Offloading in Mobile Cloud
Computing”, IEEE, Dec. 2013, pp. 34-41; <http://ieeexplore.icce.
org/stamp/stamp.jsp?tp=&arnumber=6809337>*

Intel Xeon Phi Coprocessor—Offload Compilation, IBM, Sep.
2012.

Bernard Goossens, A Multithreaded Vector Co-processor, Parallel
Computing Technologies, 4th International Conference, PaCT-97
Yaroslavl, Russia, Sep. 8-12, 1997 Proceedings, Lecture Notes in
Computer Science vol. 1277, 1997, pp. 311-321.

M. M. Rafique,Symphony: A Scheduler for Client-Server Applica-
tions on Coprocessor—Based Heterogeneous Clusters, Cluster
Computing (CLUSTER), 2011 IEEE International Conference, Sep.
26-30, 2011, pp. 353-362, Austin, TX.

* cited by examiner

US 9,465,618 B2

Sheet 1 of 7

Oct. 11, 2016

U.S. Patent

IIE
1INN [NO3Y | TIND NOIY |
91~ - 70| ¥E 9~ - 7D | €
18issV [~ Hra - 1SISSY [~ e -
8l w81 g Y g om0~ g o8 g
cm. wm /. A \4 ﬁ_) ﬂv A /» A V) A D A ﬂ_
AV e v § | TR) R 3 2 5 (2 Co e 3 1 Y XM B 2 £ S B e S ER A
M | @ [[W N 0 | | W
z 2 N J)))))))
EATETENTT /) 2l 2l 2l Z) 2l 2l))
WI¥3S ST TNO AiE- TNA AVE-
J NALSAS 9~ 1gigey [+ eO] e 9~ 1gisev [*-eRdd] ¥E
d A4 | O3 , D3
4 w_‘)la 8l 21{# 8l
: vo_ /> A U ﬂ_ [Y) A A /. A u A [Y) A ﬂ_
9z 74 NL[€L[Zy]biNLEL[eL[bL[INEL[er[VLfNLE L[z [bi| NLIEL[Zu]bL[iNdEL[eL]s L]INLELer]b LfINL[€L[Zn]} L
R N o | 2 | b
{ [{ { [{ { { [{ [{
7 / 7 I 7 7 v 7/ 7
A 2l) 2l 4 2l 2o))

0l

L4 d0[dld

US 9,465,618 B2

Sheet 2 of 7

Oct. 11, 2016

U.S. Patent

ec’old

o€l 8zl

J J

AV || WOH

” 74}

W3S

op, —] (Y321S NOLLONNS Y3dAL NOILONN] = _JYIzISNOILONNA YadAL NOLLONN4] =
/ /YoMLY Ovl / / VoI
~ -~ LNNISISSY ~—_~ ~ IN1ISISSV
9Ll 77 94l 77 &
ovh 8E} [y ovh B [y
[} f [} f
Of] [a 0C] (e g
81 gl y—8Hg 8l gy 8l o oy _Blgy
Vo v wm VYV Vw P m Vom Vo
§ Y § Y § Y § Y § \ { Yy § Yy ¢
()78 2 T 2 3 2 2 27 30 2 { M 0 20 A 2 S A R N | SR A B A R S R R A A A R
N9 £ %) N £ 4)
a’ w’ A w’ wl w o’
ovh —~ Y3215 NOLLONNS V3dAL NOILONNS] = [[V321S NOILONNS "Y3dAL NOLLONN4] =
// VoR3Lwv 0¥l / / VOoRINLY
7~ -~ LNnISISSV —__~ ~ 1NNISSSY
M 77 % o 77 7§
Ovh 88 [y orh 8E} [y
A .f A .r
OC] [751 [T Gl
81l g gy \eww: 8h 81 8t gy \m:nm:
YV w ¥V wm W] 1Y) Vo Y V oyl
\ { \ § \ w‘:‘ Y _w:‘ Y _w:‘ \ { \ _w: Y §
(Y178 2 T 20 20 20 2 2 0 e 3| M EA ER A R S A G R | SR A R A R SN R A R A R A R
i) Y] 9 el %) 9 R
1 g 1 {1 * 41 41 e ar
0z

US 9,465,618 B2

Sheet 3 of 7

Oct. 11, 2016

U.S. Patent

dq¢'9l14
vl gel
e L
¢ri~ V371 NOILONNA ‘YadAL NOILONNAI = YOIy JAILOV
oL~ 1INN Hw_mm<
[£321S NOILONNA ©3dAL NOILONN] = £03Y
bl [¢3Z1S NOILONNA ‘¢3dAL NOILONNA] = Z03y

[+321S NOILONNA ‘}3dAL zo_BzE_ = D3y

8¢l y

[NOO37/8 NOILONNA X NOJgdn 1l =
SNYAW TYNOLLNAANOD
HLIM INFHHND D3 SLINN FNIL

[(V3ZIS NOILLONNZ NIVINTY X YSdnl)
- (Y3ZIS NOILONNA X VSdn L=
YHIY JALLOV HO4 ONINIVWIY SLINN JNIL

[V3zZIS NOILONN4 X VSdnL] = VO34 JAILOV SLINN JNIL

[£3ZI1S NOILONNA X €8dN 1] = €03H SLINN JNIL

[¢3Z1S NOILONNA X €SdNLl= 039 SLINN JNIL

[}3Z19 NOILONNA X FSdnl = 1D3Y SLINN JNIL

el TAYMLIOS [9321S NOILONN4 X ISdn Ll = INTHHND DFY SLINN JNIL
9¢) =1 INJWIOVYNVA ¥3INNOJ LINN 1SISSY
_-81) \w:«l(w: o 8 w

ok Jas ﬂ R 0\

zs1
Pag 0\ el

Nifvp{€L|eL|bl] INLvL[€L{eL|bL] INLVLIEL

b| INLvL[EL[CL|bL

chi ¢l 4%

\

47

US 9,465,618 B2

Sheet 4 of 7

Oct. 11, 2016

U.S. Patent

(44

FOVHALINI

1vI¥3S

J
WA

0El

J

8¢l

J

AvY

WON

(44
\ 44

snd
W3LSAS

(447

H3NIL

140d
ol

)

9l

)

vel

P

00}

eg¢old
| |
_ [¥321S NOILONN4 [¥321S NOILONNA
201~ V3dAL NOLLONNA] =| =— 751 ‘VIdAL NOILONN] =| =—
Yoy 3nLoy| | vEL Vo34 3aLoy| | P
[} Y [} Y
ol <1 76 ol <75
8l 8l g~ 8L _SBligy 8 g, BU—~F 8 _sgu gy
o 9 M o Ve Y & o Y o Vvl
Yy ¢ Y { Yy { Y § Yy ¥ Y { Yy Y §
NLJEL[2p[| INLeL[ertb o] NLlELfzr|bL| INLeL[2efb] INLeL[za|vo| NLlEL|2Lfb o] INLEL[ZL|vLf NilEL|zL]bL
No %) [4) %) N9 %) [4) A
a’ wl wl w” o w’ wt W
| |
[¥3Z1S NOILONN4 [¥32IS NOILONNA
'V3dAL NOILONNA] =| =— ‘YIdAL NOILONN] =| =—
7y 1 VO IALIY| | ¥EI zpl ™ VO JAILOY| | ¥EH
[} Y [} Y
T e B ol = G
8 og, sl—~F s Sk, g 8l gu—~F su 8l g
g a wm VM Ve w9 o oo Vo
Yy ¢ Yy ¢ Yy ¢ Yy 9 Y ¢ Yy Yy Yy ¢
T R A S A R SN e A SN E A N R CN B B En e A S e | SN A N
N9 €0 4]) Ny %) [4) %)
e A ar ~ i A i
0zl

US 9,465,618 B2

Sheet 5 of 7

Oct. 11, 2016

U.S. Patent

8} Y Y
vl)
) . [NOJ3Z/S NOILONN4 X NOJsdn] =
. — [€3ZIS NOILONNA ‘3dAL NOILONNS] = €03y SNYIW TYNOILNIANOD
[¢3Z1S NOILONNA ‘¢3dAL NOILONN] = 203y HLIM INTHHND O3 SLINN INIL
[1321S NOILONNA ‘+3dAL NOILONNA] = LD3Y [(V3Z1S NOILONNA NIVW3Y X YSdn1)
—~_1[0321S NOILONNA “O3dAL NOLLONNA] = INTHHND DI - (Y3218 NOILONNA X YSdnL)l=

[V3ZIS NOILONNA ‘YIdALNOILONN4] =YO3 JAILOV

/4

ovl

of o

vl

q

Y

Vel

gl

1INN
1SISSY

Y03 JAILOY HO4 ONINIVAZY SLINN JNIL

[V3ZIS NOILONN4 X YSdNnL] = VO34 JAILOV SLINN FNIL

[£3Z1S NOLLONNA X £SdNL] = €03 SLINN JNIL

[¢3Z1S NOILONNA X ¢SdNnL]= 203 SLINN JNIL

[}3Z1S NOILONNA X FSdnL] = LD3Y SLINN JNIL

[93Z1S NOILONNA X IsdNnL] = INTHEND DI SLINA FWIL

8Ll

¥3LNNOJ LINN LSISSV
8l /7

_8H 8 PL »\w: 2|
)
vV _wm¥ _wy o
N€rfer|tr] [NLEL|ea|bef INyeLCL|bL] [NLELICL|}L
N9 %) 48] %)

cH

47

47

47

U.S. Patent Oct. 11, 2016

Sheet 6 of 7

US 9,465,618 B2

HARDWARE THREAD 114

'

PROCESSING REQUEST 118

'

MANAGEMENT
SOFTWARE 136

NO

IS AN ASSIST
UNIT 116
PRESENT?

!

CALCULATE ASSIST UNIT 116
TIME TO COMPLETE THE
PROCESSING REQUEST 118

'

CALCULATE CONVENTIONAL
TIME TO COMPLETE THE
PROCESSING REQUEST 118

IS THE
ASSIST UNIT 116

NO COMPLETION TIME LESS

THAN THE CONVENTIONAL
COMPLETION
TIME?

'

REQUEST IS ENQUEUED REQUEST IS
FOR COMPLETION BY THE » COMPLETED BY THE
ASSIST UNIT 116 ASSIST UNIT 116

FIG.4

U.S. Patent Oct. 11, 2016 Sheet 7 of 7 US 9,465,618 B2

200

RECEIVING AT LEAST ONE PROCESSING
REQUEST ON AMICROPROCESSOR HAVING | ,—202
MULTIPLE PROCESSING CORES AND AT LEAST
ONE ASSIST UNIT

Y

DETERMINING A FUNCTION TYPE AND _,f'204
FUNCTION SIZE FOR THE AT LEAST ONE
PROCESSING REQUEST

Y

FINDING AN AVAILABLE ASSIST UNIT BASED ON _/‘206
THE FUNCTION TYPE AND FUNCTION SIZE

v

ASSIGNING THE AT LEAST ONE PROCESSING | _—208
REQUEST TO THE AVAILABLE ASSIST UNIT

Y

CALCULATING AN ASSIST UNIT COMPLETION 210
TIME TO COMPLETE THEATLEASTONE |
PROCESSING REQUEST WITH THE AVAILABLE
ASSIST UNIT

Y

FINDING AN AVAILABLE PROCESSING CORE |22

Y
CALCULATING A CONVENTIONAL COMPLETION
TIME TO COMPLETE THEATLEASTONE | 214
PROCESSING REQUEST WITH THE AVAILABLE
PROCESSING CORE

Y

DESIGNATING THE AVAILABLE ASSIST UNIT TO
COMPLETE THE AT LEAST ONE PROCESSING | ,—216
REQUEST IF THE ASSIST UNIT COMPLETION
TIME IS LESS THAN THE CONVENTIONAL
COMPLETION TIME

y
DESIGNATING THE AVAILABLE PROCESSING 218
CORE TO COMPLETE THEAT LEASTONE |-~
PROCESSING REQUEST IF THE ASSIST UNIT
COMPLETION TIME IS GREATER THAN THE
CONVENTIONAL COMPLETION TIME.

FIG.5

US 9,465,618 B2

1
METHODS AND SYSTEMS FOR
OPTIMALLY SELECTING AN ASSIST UNIT

BACKGROUND

1. Field of the Invention

The present invention generally relates to microproces-
sors and, more particularly, to methods and systems that help
accelerate a microprocessor’s execution of functions by
optimally selecting an available assist unit.

2. Relevant Background

Integrated circuits such as microprocessors contain mul-
tiple processing cores having multiple hardware threads that
receive processing requests (also referred to as software
tasks) to execute various functions for a computer. As
microprocessor technology advances, more and more com-
ponents and features are incorporated into the design of
microprocessors to execute functions at faster rates. A recent
design trend for microprocessors is to incorporate special-
ized co-processors, also referred to as accelerators or assist
units, which execute functions in targeted applications at
faster rates. The use of such assist units is typically encap-
sulated into a collection of functions (also referred to as a
library of functions) within the microprocessor. The library
of functions may be executed on older systems with con-
ventional software and on newer systems with specialized
software that leverages the available assists units.

In modern designs, a microprocessor may include one or
more assist units assigned to one or more processing cores
having multiple hardware threads. For example, a process-
ing core may have an assigned assist unit capable of execut-
ing a specific function—such as a memory copy function.
While the processing core is capable of executing the
memory copy function using one or more of the processing
core’s hardware threads, the assist unit is able to execute the
memory copy function at a faster rate. Thus, in an effort to
accelerate execution of the memory copy function, when the
processing core receives a processing request for the
memory copy function—the processing core will request
that the assigned assist unit execute the copy function. Not
only does this allow the assist unit to accelerate completion
of the processing request (execution of the function), but it
also allows the processing core to execute another memory
copy function or perform other tasks with the hardware
thread that would otherwise be executing the original
memory copy function. If additional processing requests are
made to the assigned assist unit, then the assist unit will
queue the additional processing requests and complete the
requests in turn. Accordingly, assist units may help balance
the microprocessor’s workload and accelerate execution of
functions.

SUMMARY

Typical microprocessors only check for the presence or
absence of assist units but fail to adequately address whether
an assist unit should be used in the first place. While assist
units may accelerate execution of functions, assist units may
also delay execution of functions by increasing completion
times for processing requests. Accordingly, a microproces-
sor may not always benefit from using an assist unit.

For example, assume that a microprocessor (also referred
to as a microprocessor chip or integrated circuit) includes far
fewer assist units than hardware threads of execution (i.e.,
conventional processing means) for a particular group of
processing cores to which the assist units are assigned.
When a processing request for a specific function is received

10

25

35

40

45

55

2

by a processing core, it assigns the processing request to a
hardware thread for processing. While processing the
request, the processing core (or hardware thread) checks to
see if an assist unit is present to complete the processing
request (i.e., accelerate execution of the function associated
with the processing request). If an assist unit is not present,
the hardware thread completes the processing request by
executing code that performs the function conventionally. If
an assist unit is present, the hardware thread will request that
the assist unit complete the processing request and thereby
execute the function (i.e., execute code that causes the assist
unit to perform the function) regardless of the time it will
take the assist unit to actually complete the request.

More, specifically, if the assist unit is currently busy
completing requests from other hardware threads, then the
assist unit queues the outstanding (i.e., current) request until
the assist unit completes antecedent requests. However, if
another way to process the outstanding request—such as the
original hardware thread that initiated the request or another
available hardware thread or a different assist unit—were
available to complete the processing request, then the assist
unit may have been delaying completion time by queuing
the outstanding processing request. That is, the assist unit
may have delayed completion time by placing the process-
ing request in the queue when the processing request could
have otherwise been completed faster by using an available
hardware thread or with another available assist unit (while
the originally assigned assist unit was completing antecedent
requests).

In this regard, disclosed herein are methods, apparatuses,
and systems that allow microprocessors to optimally select
an assist unit based on various features related to processing
request completion times in order to reduce the time it takes
to execute a function (i.e., complete a processing request).
As will be discussed in more detail herein, the present
disclosure makes use of assist unit hardware, assist unit
management software, or a combination of the two to
manage various features and determine completion times in
order to optimally select an assist unit.

The various features may include a queue of processing
requests that are pending at the assist unit, a function type
and size (number of processing steps) for each processing
request, a time unit per step (“TUPS”) value for each
function type related to the assist unit, a conventional TUPS
value for each function type related to hardware threads
using conventional software, and an assist unit counter that
tracks time units related to the assist unit.

The methods and systems may use these various features
to calculate estimated times (i) to complete the processing
request with conventional hardware threads, (ii) to complete
the same processing request with an assigned assist unit,
and/or (ii) to complete the same processing request with
another available assist unit. Once calculated, the estimated
completion times for the assigned assist unit may be com-
pared to the estimated completion time for the conventional
hardware threads, and/or the estimated completion time for
another available assist unit—in order to determine the
fastest completion time. If the assist unit has a large queue
of requests and a conventional hardware thread could com-
plete the outstanding processing request faster, then the
outstanding processing request may be sent to the hardware
thread for execution. In a similar fashion, the assist unit may
send the outstanding processing request to another available
assist unit. The processing request may be queued by the
assigned assist unit if the assist unit can complete the
requested processing request faster than other available
options.

US 9,465,618 B2

3

In one aspect, a system for optimally selecting an assist
unit to reduce completion times for completing processing
requests to execute functions includes a microprocessor
having a plurality of processing cores. Each processing core
may include multiple hardware threads for executing func-
tions (i.e., executing code that performs the function con-
ventionally), such as a copy function, an uppercase letter
function, or a comparison function. The system may further
include at least one assist unit interconnected with the
plurality of processing cores. The system may include
management software in communication with the plurality
of processing cores and the at least one assist unit. The
management software may be compatible with existing
software used by the plurality of processing cores. The
management software may manage processing requests and
locate an available assist unit to complete each processing
request. The management software may also calculate an
assist unit completion time for an outstanding processing
request, calculate a conventional completion time for the
outstanding processing request, and then compare the con-
ventional completion time to the assist unit completion time
for the outstanding processing request. The management
software may then assign the outstanding processing request
to the assist unit when the assist unit completion time is less
than the conventional completion time. Alternatively, the
management software may assign the outstanding process-
ing request to an available processing core when the assist
unit completion time is greater than the conventional
completion time.

In one embodiment, determining the assist unit comple-
tion time for the at least one outstanding processing request
may include calculating a total assist unit completion time.
The total assist unit completion time may include (1) a
remaining assist unit completion time for completing an
active request by the available assist unit, and (2) a pending
assist unit completion time for completing pending process-
ing requests by the available assist unit.

In another aspect, a method for optimally selecting an
assist unit to reduce completion times for completing pro-
cessing requests to execute functions includes receiving,
with a microprocessor, at least one processing request to
execute a function with an assist unit. The method includes
determining an assist unit completion time for completing
the processing request with the assist unit in response to the
processing request. The method further includes determin-
ing a conventional completion time for completing the
processing request with a conventional hardware thread
associated with the microprocessor. When the assist unit
completion time is less than the conventional completion
time then the assist unit will complete the processing
request. When the conventional completion time is less than
the assist unit completion time then the method may route
the processing request to the hardware thread and complete
the processing request using a conventional process that may
include conventional software.

In one embodiment, the step of determining the assist unit
completion time includes analyzing the utilization of the
assist unit with assist unit hardware. The analysis of utili-
zation may include determining a queued assist unit pro-
cessing time for completing pending requests in a queue of
requests with the assist unit, determining a current assist unit
completion time for completing the current request with the
assist unit, and summing the queued assist unit processing
time and the current assist unit completion time. The analy-
sis may further include determining a remaining processing
time for an active request being processed with the assist
unit. In some embodiments, the method may maintain a

20

25

40

45

55

4

counter that tracks time units for completing one or more
pending requests in the queue of requests with the assist unit.
The method may also include recognizing a function type
and function size for the processing request and associating
time units to the processing request based on the function
type and the function size.

In a further aspect, a method for optimally selecting an
assist unit to reduce completion times for completing pro-
cessing requests to execute functions includes receiving a
processing request on a microprocessor having multiple
processing cores and at least one assist unit. The method
includes determining a function type and function size for
the processing request. The method then finds an available
assist unit based on the function type and function size and
assigns a processing request to the available assist unit. The
method may then calculate an assist unit completion time to
complete the processing request with the available assist
unit. In one embodiment, the method may include finding an
available processing core and calculating a conventional
completion time to complete the processing request with the
available processing core. Then, the method may designate
the available assist unit to complete the processing request
when the assist unit completion time is less than the con-
ventional completion time. Alternatively, the method may
designate the available processing core to complete the
processing request when the assist unit completion time is
greater than the conventional completion time.

In addition to the exemplary aspects and embodiments
described above, further aspects and embodiments will
become apparent by reference to the drawings and by study
of the following descriptions.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure herein may be more completely under-
stood in consideration of the following detailed description
of various embodiments in connection with the accompa-
nying drawings, in which:

FIG. 1 is a block diagram of a prior art microprocessor
configuration having multiple processing cores, hardware
threads, and assist units to execute various functions on a
computer,

FIG. 2a is a block diagram illustrating various assist units
and processing cores in combination with management
software;

FIG. 24 is a block diagram illustrating an assist unit and
processing cores in combination with management software;

FIG. 3a is a block diagram illustrating various assist units
and processing cores without management software;

FIG. 354 is a block diagram illustrating an assist unit and
processing cores without management software;

FIG. 4 is a flow diagram illustrating steps that may be
performed to assign an assist unit to complete a processing
request; and

FIG. 5 is flow diagram illustrating a method that may be
performed for optimally selecting an assist unit to complete
a processing request.

While the invention is susceptible to various modifica-
tions and alternative forms, specifics have been shown by
way of example in the drawings and will be described in
detail below. It should be understood that the intention of the
detailed description is not to limit aspects of the invention to
the particular embodiments described. On the contrary, the
invention covers all modifications, equivalents, and alterna-
tives falling within the spirit and scope of the invention.

DETAILED DESCRIPTION

The following defined terms disclosed in this detailed
description shall apply, unless a different definition is given

US 9,465,618 B2

5

in the claims or elsewhere in this specification. As used in
this detailed description and the appended claims, the sin-
gular forms “a,” “an,” and “the” include the plural referents
unless the content clearly dictates otherwise. In addition, the
term “or” is generally employed in its sense including
“and/or” unless the content clearly dictates otherwise.

The following detailed description should be read with
reference to the drawings in which similar elements in
different drawings are numbered the same. The detailed
description and the drawings, which are not necessarily to
scale, depict illustrative embodiments and are not intended
to limit the scope of the invention. The illustrative embodi-
ments depicted are intended only as exemplary. Selected
features of any illustrative embodiment may be incorporated
into additional embodiments unless clearly stated to the
contrary. While the embodiments may be described in terms
of spatial orientation, the terminology used is not intended
to be limiting, but instead to provide a straightforward
description of the various embodiments.

The present disclosure is generally directed to methods,
apparatuses, and systems that allow a microprocessor to
optimally select a co-processor, referred to herein as an
assist unit, to reduce completion times for completing pro-
cessing requests to execute functions. The present disclosure
may include assist unit hardware, assist unit management
software, or a combination of the two to optimally select the
assist unit for completing a specific processing request. The
methods, apparatuses, and systems calculate times for com-
pleting the processing request for conventional means and
for assist units. The times are then compared to determine
the fastest time for completing a specific processing request.

Referring now to FIG. 1 illustrating a block diagram of a
prior art microprocessor 10 configuration having multiple
processing cores 12, multiple hardware threads 14, and
multiple assist units 16 to complete processing requests 18
and execute various functions on a computer. As shown,
each assist unit 16 may be assigned to a group of processing
cores 12 located on a central processing unit (“CPU”) 20
(e.g., chip). The CPU 20 may receive processing requests 18
by way of a system bus 22 operatively associated with an I/O
port 24, a timer 26, a Read-Only Memory (“ROM”) 28, a
Random-Access Memory (“RAM”) 30, and serial interface
32. In the prior art microprocessor 10, a processing request
18 for execution of a specific function (e.g., a memory copy
function) is received by the CPU 20 through system bus 22.
The CPU 20 assigns the processing request 18 to a process-
ing core 12 which then assigns the processing request 18 to
a hardware thread 14 to complete the processing request 18
and thereby execute the function (e.g., the memory copy
function) associated with the processing request 18. While
the hardware thread 14 is capable of completing the pro-
cessing request 18, the hardware thread 14 may determine if
an assist unit 16 is present and applicable to complete the
processing request 18 (i.e., accelerate execution of the
function associated with the processing request 18). If an
assist unit 16 is present and applicable, then the hardware
thread 18 will send the processing request 18 to the assist
unit 16. If the assist unit 16 is busy completing other
processing requests 18, then the assist unit 16 will place the
current (i.e., outstanding) processing request 18 in a queue
34. The assist unit 16 will then complete the antecedent
queued processing requests 18 before completing the newly
queued processing request 18. If no assist unit 16 is appli-
cable or present, then the hardware thread 18 will complete
the processing request 18 by executing code that completes
the associated function conventionally.

10

15

20

25

30

35

40

45

50

55

60

65

6

In the prior art microprocessor 10 configuration shown in
FIG. 1, the hardware thread 14 (processing core 12) pro-
cessing the processing request 18 only checks for the
presence or absence of an assist unit 16—then, if an assist
unit 16 is present, the hardware thread 14 sends the pro-
cessing request 18 to the assist unit 16. However, the
microprocessor 10 configuration fails to adequately address
whether the assist unit 16 should be used to complete the
processing request 18 in the first place. More particularly,
while the assist unit 16 may accelerate execution of the
function and completion of the processing request 18, the
assist unit 16 may also delay the completion time of the
processing request 18 by delaying completion of the pro-
cessing requests 18. For example, if another processing
means (such as the original hardware thread 14 that initiated
the processing request 18 or another available hardware
thread 14 or a different assist unit 16) were available to
complete the processing request 18 faster—the assist unit 16
in FIG. 1 may have been delaying completion time by
queuing the current (outstanding) processing request 18 in
queue 34.

In order to adequately address whether an assist unit
should be used to complete a processing request, disclosed
herein are methods, apparatuses, and systems that allow a
microprocessor to optimally select an assist unit based on
various features related to completion times in order to
reduce the time it takes to execute a function (i.e., complete
the processing request). As will be discussed in more detail
herein, the present disclosure makes use of assist unit
hardware, assist unit management software, or a combina-
tion of the two to manage various features and determine
completion times in order to optimally select an assist unit.

Turning now to FIGS. 2a and 25, illustrating a micropro-
cessor 100 having assist units 116 and processing cores 112
in combination with management software 136. In such an
embodiment, a processing request 118 may be received by
the CPU 120 through system bus 122. The CPU 120 may
then assign the processing request 118 to a processing core
112 which then assigns the processing request 118 to a
hardware thread 114. Management software 136 may inter-
act with the hardware thread 114 (e.g., receive the process-
ing request 118) to determine and analyze various features in
order to optimally select an assist unit 116.

The various features may include the function type 138
and size 140 of the processing request 118. In some embodi-
ments, the function size 140 is known. In other embodi-
ments, the function size 140 may be unknown. When the
function size 140 is unknown, management software 136
may determine such by estimating the function size 140
based on similar function types 138 or from a database of
function sizes 140 associated with function types 138. Once
the function type 138 and function size 140 are established,
the management software 136 may determine if an assist
unit 116 is present and capable of completing the processing
request 118 based on the function type 138 and function size
140.

More specifically, if an assist unit 116 is present and
capable of completing the processing request 118, the man-
agement software 136 then begins to analyze whether the
assist unit 116 can complete the processing request 118
faster than the hardware thread 114, or, in some embodi-
ments, faster than another available assist unit 116. When the
assist unit 116 completion time is less than the hardware
thread 114 completion time (i.e., the conventional comple-
tion time), then the management system 136 may execute
code to complete the processing request 118 with assist unit
116. When the conventional completion time is less than the

US 9,465,618 B2

7

assist unit 116 completion time, then the management soft-
ware 136 may execute code to complete the processing
request 118 conventionally (i.e., with hardware thread 114
using conventional software).

As mentioned herein, in order to determine whether the
assist unit 116 completion time is faster than the conven-
tional completion time, the management software 136 ana-
lyzes various features and determines the utilization of the
assist unit 116. Broadly, the assist unit 116 completion time
may include the sum of completion times for one or more
active requests 142 (i.e., requests currently being processed
by the assist unit 116), one or more queued pending pro-
cessing requests 144, and the current processing request 146.
As shown in FIG. 25, the analyzed features may include a
queue 134 of pending processing requests 144 having a
function type 138 and function size 140 that are pending for
completion by the assist unit 116. The function size 140 may
be expressed by the number of processing steps. The fea-
tures also include time units per step (“TUPS”) values, such
as an assist unit TUPS value for each processing requests
118 including current processing request 146 and active
processing request 142. The TUPS values may also include
a conventional TUPS value related to the completion time
for the hardware thread 114 to complete the current pro-
cessing request 146 using conventional software. Additional
features may include an assist unit counter 152 for deter-
mining time units with the TUPS values. The assist unit
counter 152 may determine and track the time units for the
pending processing requests 144 in queue 134, the active
request 142 being actively processed by the assist unit 116,
the time units remaining for the active request 142 being
actively processed by the assist unit 116, and the time units
to complete the current processing request 146 with the
assist unit 116 (in isolation), as well as the time units to
complete the current processing request 110 with a conven-
tional means.

The management software 136 may initially analyze the
various features to determine the utilization of assist unit 116
by determining a completion time for pending processing
requests 144 in queue 134 with the assist unit 116. The
function type 138 and function size 140 must be established
to determine the completion time for the pending processing
requests 144. For example, the pending processing requests
144 in queue 134 may include the following three pending
processing requests 144:

REQ 1=[Greater_than_function, 17863]

REQ 2=[Memory_copy_function, 45892]

REQ 3=[Upper_case_character_function, 13589]

The three pending processing requests 144 each include a
function type 138 (i.e., Greater_than_function, Memory_co-
py_function, and Upper_case_character_function) and a
function size 140 (i.e., 17863, 45892, and 13589) associated
with each function type 138. The function sizes 140 may
represent the number of steps (also referred to as elements)
associated with each function type 138. Knowing the func-
tion type 138 and function size 140, the management system
136 may then use a linear model to determine the time units
for each processing request 118. In some embodiments, the
management system 136 may also use a polynomial model
to determine the time units for each processing request 118.
In determining the time units for each processing request
118, the management system 136 may maintain a table of
rates (i.e., TUPS values) or polynomial coefficients for each
function type 138. For example, the table of TUPS values for
the above example processing request may include a TUPS
value of 6 for the Greater_than_function, a TUPS value of

25

30

35

40

45

8

3 for the Memory_copy_function, and a TUPS value of 8 for
the Upper_case_character_function.

Using the TUPS values, assist unit counter 152 then
determines and tracks the time units to complete the pending
processing requests 144. For example, the time units to
complete the pending processing requests 144 in queue 134
for the above example may be as follow:

Time Units REQ 1=17863x(TUPS value 6)

Time Units REQ 2=45892x(TUPS value 3)

Time Units REQ 3=13589x(TUPS value 8)

Accordingly, in the above example the Time Units REQ
1=107178, Time Units REQ 2=137676, and Time Units
REQ 3=108712. The management software 136 may then
calculate the total time units for pending processing requests
144 (REQ 1, REQ 2, and REQ3) by summing the times
units. For this example, the total time units for the pending
processing requests equals 353566 time units.

To calculate the remaining time for the active request 142,
the total function size 140 minus the completed steps (by the
assist unit 116) may be calculated and multiplied by the
TUPS value for the active request 142. For example, assume
the active request 142 is a Less_than_function and has a size
0t 38617 steps with a TUPS value of 6. In addition, assume
that 35617 steps of the total 38617 steps have already been
completed by the assist unit 116. The calculation then
becomes (TUPS value 6)x(38617-35617) which equals
18000 remaining time units for the active request 142. As
active request steps are completed, the remaining time may
be recalculated using the above equation. The time may be
tracked by hardware, such as the assist unit counter 152, or
by software in conjunction with the hardware.

While the remaining time units for the active assist
request 142 may be calculated using the above approach, the
remaining time units may also be calculated in other ways,
as would become apparent to a person having ordinary skill
in the art after reading the present disclosure. For example,
in some embodiments, the assist unit 116 could track the
remaining time directly by initializing the assist unit counter
152 with the total time units to complete the active request
and then decrementing the calculated time units by the
TUPS value of 6 as each step is completed. In other
embodiments, the assist unit counter 152 may only keep
track of the number of steps by initializing the assist unit
counter 152 with total function size (i.e., steps) and then
decrementing by 1 each time a step is completed. Manage-
ment software 136 or software imbedded in the micropro-
cessor 100 may then calculate the remaining time units for
the active request 142 by multiplying the number of steps
remaining by the TUPS value. Yet, in other embodiments,
software may track the issue time (also referred to as start
time) of the active request 142 and then subtract elapsed
time from the total time needed to complete the active
request 142.

Having determined the remaining time units for the active
request 142 and the pending request 144, the management
software 136 in conjunction with the assist unit counter 152
may determine the time units for the assist unit 116 to
complete the current request 146 (i.e., the outstanding pro-
cessing request 118) in isolation (e.g., as if the assist unit 116
could immediately start processing the current request 146),
as well as the time units for the conventional means to
complete the current request 146. Similar to the calculations
described above, in order to calculate the respective time
units for the assist unit 116 and the conventional means, the
TUPS value for the assist unit 116 for the current request 146
may be multiplied by the function size 140 of the current
request 146 the and the TUPS value for the conventional

US 9,465,618 B2

9

means for the current request 146 may be multiplied by the
function size 140 of the current request 146. For example,
assume that the current request 146 is a Lower_case_func-
tion having a function size 140 of 8000. Also, assume that
the TUPS value for the conventional means is 60 and the
TUPS value for the assist unit 116 is 10 (i.e., the assist unit
116 is capable of accelerating the Lower_case_function by
6x (60/10)). The time units for the assist unit 116 are
calculated by multiplying the function size 140 of 8000 by
the TUPS value of 10 which equals 80000 time units to
complete the current request 146 in isolation (i.e., with no
wait time) with the assist unit 116. The time units for the
conventional means is calculated by multiplying the func-
tion size 140 of 8000 by the TUPS value of 60 which equals
480000 time units to complete the current request 146 with
the conventional means.

Knowing the time units for the assist unit 116, including:

(1) the time units for the assist unit 116 to complete the
pending requests 144;

(2) the remaining time units for the assist unit 116 to
complete the active request 142; and

(3) the time units for the assist unit 116 to complete the
current request 146 in isolation—the management software
136 can sum the total times units to complete the current
request 146 with the assist unit 116. The management
software may then compare the summed total for the assist
unit 116 to the time units for the conventional means to
complete the current request 146 in order to optimally select
the assist unit 116 to complete the current request 146 or
allow the conventional means to complete the current
request 146.

Continuing with the above examples, the total time units
to complete the current request 146 with the assist unit
equals the pending request 144 total time units of 353566
plus the remaining time units for the active request 142 of
18000 plus the time units to complete current request 146
with the assist unit 16 of 80000 which equals 451566.
Comparing the total time units of 451566 to conventional
time units of 480000, the management system 136 sclects
the assist unit 116 to complete the current request 146 the
fastest and accordingly queues current request 146 in queue
134. If the total time units for the assist unit 116 were greater
than the conventional means time units, then the manage-
ment software 136 would have sent the current request 146
back to hardware thread 114 for conventional processing. In
determining whether to select the assist unit 116 for comple-
tion of the current processing request 146, the management
software 136 may implement the following code, for
example:

// Arrived at a point where an assist unit may be used

if (this_system_has_an_assist_unit_for_this_function) {

// New system—has an assist unit

Calculate Time_units_assist_unit;

Calculate Time_units_conventional _means;

if
(Time_units_assist_unit<Time_units_conventional_means)
{

execute_code_that_leverages_assist_unit;

}

else {

// New system but not worth using assist unit now

execute_code that_performs_the_function_convention-
ally;

}

else {
// Old system—has no assist unit

20

25

30

40

45

50

55

60

65

10

execute_code_that_performs_the_function_convention-
ally;

}

Turning now to FIGS. 3a and 35, a block diagram having
various assist units 116 and processing cores 112 without
management software 136 is illustrated. In such an embodi-
ment, a processing request 118 may be received by the CPU
120 through system bus 122. The CPU 120 may then assign
the processing request 118 to a processing core 112 which
then assigns the processing request 118 to a hardware thread
114. The hardware thread 114 may then check to see if an
assist unit 116 is present and capable of completing the
processing request 118. Alternatively, the processing core
112 may check to see if an assist unit 116 is present and
capable of completing the processing request 118 before
sending the processing request 118 to hardware thread 114.
If an assist unit 116 is present and capable of completing the
processing request 118, the assist unit 116 begins to analyze
whether it can complete the processing request 118 faster
than the hardware thread 114. When the assist unit 116
completion time is less than the hardware thread 114
completion time then the assist unit 116 queues the process-
ing request 118 in queue 134 for completion. When the
conventional completion time is less than the assist unit 116
completion time then the assist unit 116 returns the process-
ing request 118 to the hardware thread 114 for completion.

As shown in FIG. 35, in order to determine whether the
assist unit 116 completion time is faster than the conven-
tional completion time, the assist unit 116 in combination
with hardware and/or software analyzes various features and
determines the utilization of assist unit 116. As shown in
FIG. 354, and similar to those described above, such features
may include a queue 134 of pending processing requests 144
having a function type 138 and function size 140 that are
pending to be completed by the assist unit 116. The features
also include a TUPS value (or polynomial coefficients) for
each processing requests 118 including current processing
request 146 and active processing request 142. The TUPS
values may also include a conventional TUPS value related
to the completion time for the hardware thread 114 to
complete the current processing request 146 using conven-
tional software. The features may also include assist unit
counter 152 for determining time units with TUPS values.
The assist unit counter 152 tracks time related to the current
processing request 146, pending processing requests 144,
and the active processing request 142.

Using such features and components the assist unit 116
determines the time units, including the time units for the
pending request 144, the remaining time units for the active
request 142, the time units for the assist unit 116 to complete
the current request 146 in isolation, and the time units for the
conventional means to complete the current request 146. The
assist unit 116 in combination with software may then sum
the total times units to complete the current request 146 and
then compare the summed total to the time units for the
conventional means and thereby optimally select the assist
unit 116 to complete the current request 146 or allow the
conventional means to complete the current request 146.

FIG. 4 shows one possible flow diagram illustrating steps
that may be performed to assign an assist unit 116 to
complete a processing request 118 using management soft-
ware 136 or using the assist unit 116 without the manage-
ment software 136. As shown, hardware thread 114 sends a
processing request 118 to the management software 136 to
determine if an assist unit 116 is present. The hardware
thread 114 may determine if an assist unit 116 is present by
using hardware and software imbedded on the CPU 120. If

US 9,465,618 B2

11

the assist unit 116 is not present, the processing request 118
is returned to the hardware thread 114 to be completed
conventionally. If an assist unit 116 is present, the comple-
tion time for the assist unit 116 and conventional means is
calculated using TUPS values. If the assist unit 116 comple-
tion time is faster than the conventional means then the
processing request 118 is enqueued or completed by the
assist unit 116. When the conventional means completion
time is faster than the assist unit 116 completion time then
the processing request 118 is returned to the hardware thread
114 to be completed conventionally. Accordingly, the dis-
closed methods, apparatuses, and systems may be used to
extend the completion of processing request 118 to more
than two choices, and work with different tables of TUPS
values for different implementations.

Turning now to FIG. 5 showing a flow diagram illustrat-
ing method 200 that may be performed for optimally select-
ing an assist unit to complete a processing request. In one
aspect, method 200 may include receiving 202 at least one
processing request on a microprocessor having multiple
processing cores and at least one assist unit, and determining
204 a function type and function size for the at least one
processing request. Method 200 further includes finding 206
an available assist unit based on the function type and
function size, and assigning 208 the at least one processing
request to the available assist unit. Method 200 includes
calculating 210 an assist unit completion time to complete
the at least one processing request with the available assist
unit. In some embodiments, method 200 also includes
finding 212 an available processing core; calculating 214 a
conventional completion time to complete the at least one
processing request with the available processing core; des-
ignating 216 the available assist unit to complete the at least
one processing request if the assist unit completion time is
less than the conventional completion time; and designating
218 the available processing core to complete the at least one
processing request if the assist unit completion time is
greater than the conventional completion time.

It will be readily appreciated that many deviations may be
made from the specific embodiments disclosed in the speci-
fication without departing from the spirit and scope of the
invention. It is to be understood that not all components,
modules, and the like of the microprocessor 100 have been
shown in the figures in the interest of clarity. Furthermore,
the process flow diagrams of FIGS. 4 and 5 have merely
been provided as examples of process flows for optimally
selecting an assist unit 116. Still further, while only four
assist units 116 have been shown in FIGS. 2a and 35, it is
to be understood that the present teachings apply to other
arrangements of any number of assist units 116 and pro-
cessing cores 112. In addition, embodiments disclosed
herein can be implemented as one or more computer pro-
gram products, i.e., one or more modules of computer
program instructions encoded on a computer-readable
medium for execution by, or to control the operation of, data
processing apparatus (processors, cores, etc.). The com-
puter-readable medium can be a machine-readable storage
device, a machine-readable storage substrate, a memory
device, a composition of matter affecting a machine-read-
able propagated signal, or a combination of one or more of
them. In addition to hardware, code that creates an execution
environment for the computer program in question may be
provided, e.g., code that constitutes processor firmware, a
protocol stack, a database management system, an operating
system, or a combination of one or more of them.

A computer program (also known as a program, software,
software application, script, or code) used to provide the

10

15

20

25

30

35

40

45

50

55

60

65

12

functionality related to microprocessor 100 and described
herein can be written in any form of programming language,
including compiled or interpreted languages, and it can be
deployed in any form, including as a stand-alone program or
as a module, component, subroutine, or other unit suitable
for use in a computing environment. A computer program
does not necessarily correspond to a file in a file system. A
program can be stored in a portion of a file that holds other
programs or data (e.g., one or more scripts stored in a
markup language document), in a single file dedicated to the
program in question, or in multiple coordinated files (e.g.,
files that store one or more modules, sub-programs, or
portions of code). A computer program can be deployed to
be executed on one computer or on multiple computers that
are located at one site or distributed across multiple sites and
interconnected by a communication network.

The processes and logic flows described in this specifi-
cation can be performed by one or more programmable
processors executing one or more computer programs to
perform functions by operating on input data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application-specific integrated cir-
cuit). Processors suitable for the execution of a computer
program may include, by way of example, both general and
special purpose microprocessors, and any one or more
processors of any kind of digital computer. Generally, a
processor will receive instructions and data from a read-only
memory or a random access memory or both. Generally, the
elements of a computer are one or more processors for
performing instructions and one or more memory devices
for storing instructions and data. The techniques described
herein may be implemented by a computer system config-
ured to provide the functionality described. Furthermore, the
flow diagrams disclosed herein have merely been presented
as examples of manners in which the present teachings can
be implemented and do not in all cases necessarily require
all the disclosed steps and/or the particular order in which
the steps have been presented.

In different embodiments, distributed computing environ-
ment may include one or more of various types of devices,
including, but not limited to a personal computer system,
desktop computer, laptop, notebook, or netbook computer,
mainframe computer system, handheld computer, worksta-
tion, network computer, application server, storage device, a
consumer electronics device such as a camera, camcorder,
set top box, mobile device, video game console, handheld
video game device, a peripheral device such as a switch,
modem, router, or, in general, any type of computing or
electronic device.

Typically, a computer will also include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., mag-
netic, magneto-optical disks, or optical disks. However, a
computer need not have such devices. Moreover, a computer
can be embedded in another device, e.g., a mobile telephone,
a personal digital assistant (PDA), a mobile audio player, a
Global Positioning System (GPS) receiver, a digital camera,
to name just a few. Computer-readable media suitable for
storing computer program instructions and data include all
forms of non-volatile memory, media and memory devices,
including by way of example semiconductor memory
devices, e.g., EPROM, EEPROM, and flash memory
devices; magnetic disks, e.g., internal hard disks or remov-
able disks; magneto-optical disks; and CD-ROM and DVD-
ROM disks. The processor and the memory can be supple-

US 9,465,618 B2

13

mented by, or incorporated in, special purpose logic
circuitry. To provide for interaction with a user, embodi-
ments of the subject matter described in this specification
can be implemented on a computer having a display device,
e.g., a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor, for displaying information to the user and
a keyboard and a pointing device, e.g., a mouse or a
trackball, by which the user can provide input to the com-
puter. Other kinds of devices can be used to provide for
interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback,
e.g., visual feedback, auditory feedback, or tactile feedback;
and input from the user can be received in any form,
including acoustic, speech, or tactile input.

While this disclosure contains many specifics, these
should not be construed as limitations on the scope of the
disclosure or of what may be claimed, but rather as descrip-
tions of features specific to particular embodiments of the
disclosure. Certain features that are described in this speci-
fication in the context of separate embodiments can also be
implemented in combination in a single embodiment. Con-
versely, various features that are described in the context of
a single embodiment can also be implemented in multiple
embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as
acting in certain combinations and even initially claimed as
such, one or more features from a claimed combination can
in some cases be excised from the combination, and the
claimed combination may be directed to a subcombination
or variation of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and/or parallel processing may be
advantageous. Moreover, the separation of various system
components in the embodiments described above should not
be understood as requiring such separation in all embodi-
ments, and it should be understood that the described
program components and systems can generally be inte-
grated together in a single software and/or hardware product
or packaged into multiple software and/or hardware prod-
ucts.

We claim:

1. A method for optimally selecting an assist unit to
reduce completion times for completing requests to execute
functions, comprising:

receiving, with a microprocessor, at least one processing

request to execute a function with at least one assist unit
operatively associated with the microprocessor;
determining, in response to the receiving, an assist unit
completion time for completing the at least one pro-
cessing request with the at least one assist unit;
determining a hardware thread completion time for com-
pleting the at least one processing request with at least
one hardware thread operatively associated with the
MiCroprocessor;
completing the at least one processing request with the at
least one assist unit when the assist unit completion
time is less than the hardware thread completion time;
completing the at least one processing request with
another available assist unit when another available
assist unit completion time for completing the at least
one processing request with the another available assist
unit is less than the assist unit completion time; and

10

15

20

25

30

35

40

45

50

55

60

65

14

completing the at least one processing request with the at
least one hardware thread when the hardware thread
completion time is less than the assist unit completion
time.

2. The method of claim 1, wherein the step of determining
the assist unit completion time for completing the at least
one processing request comprises analyzing a utilization of
the at least one assist unit.

3. The method of claim 2, wherein analyzing the utiliza-
tion of the at least one assist unit includes:

determining a queued assist unit completion time for

completing one or more pending requests in a queue of
requests with the at least one assist unit;

determining a current assist unit completion time for

completing the at least one processing request with the
at least one assist unit; and

summing the queued assist unit completion time and the

current assist unit completion time to obtain a total
assist unit completion time.

4. The method of claim 3, wherein analyzing the utiliza-
tion of the at least one assist unit further includes determin-
ing a remaining completion time for an active request being
processed with the at least one assist unit.

5. The method of claim 3, further comprising removing
completed requests from the queue.

6. The method of claim 1, wherein determining the assist
unit completion time for the at least one processing request
comprises maintaining a counter that tracks time units for
completing one or more pending requests in a queue of
requests with the at least one assist unit.

7. The method of claim 1, wherein determining the
completion time for completing the at least one processing
request with the at least one hardware thread comprises
tracking a utilization of the at least one hardware thread.

8. The method of claim 1, wherein determining the assist
unit completion time for the at least one processing request
comprises recognizing a function type and function size for
the at least one processing request and associating time units
to the at least one processing request based on the function
type and the function size.

9. A method for optimally selecting an assist unit to
reduce completion times for processing requests to execute
functions, comprising:

receiving at least one processing request on a micropro-

cessor having multiple processing cores and at least one
assist unit;

determining a function type and function size for the at

least one processing request;

finding an available assist unit based on the function type

and function size;

calculating an assist unit completion time to complete the

at least one processing request with the available assist
unit;
finding an available processing core;
calculating a completion time to complete the at least one
processing request with the available processing core;

designating the available assist unit to complete the at
least one processing request when the assist unit
completion time is less than the conventional comple-
tion time; and

designating the available processing core to complete the

at least one processing request when the assist unit
completion time is greater than the completion time for
completing the at least one processing request with the
available processing core.

10. The method of claim 9, wherein calculating the assist
unit completion time to complete the at least one processing

US 9,465,618 B2

15

request with the available assist unit comprises determining
a time unit using a linear equation based on the function type
and the function size of the at least one processing request.

11. The method of claim 9, wherein calculating the assist
unit completion time to complete the at least one processing
request with the available assist unit comprises determining
a time unit using a polynomial equation based on the
function type and the function size of the at least one
processing request.

12. The method of claim 9, wherein determining the
function type and the function size for the at least one
processing request comprises estimating the function type
and the function size.

13. A system for optimally selecting an assist unit to
reduce completion times for processing requests to execute
functions, comprising:

management software, encoded on a non-transitory com-

puter-readable medium, in communication with a plu-
rality of processing cores and at least one assist unit,
wherein the management software manages processing
requests and wherein the management software is con-
figured to:

determine a function type and function size for an out-

standing processing request;

locate at least one available assist unit to complete the

outstanding processing request; wherein the manage-
ment software locates the at least one available assist
unit by selecting the available assist unit based on the
function type and function size for the outstanding
processing request;

calculate an assist unit completion time for the outstand-

ing processing request;
calculate a completion time for completing the outstand-
ing processing request without the assist unit;

compare the completion time for completing the outstand-
ing processing request without the assist unit to the
assist unit completion time for the outstanding process-
ing request;

5

10

15

20

25

30

35

16

assign the outstanding processing request to the available
assist unit when the assist unit completion time is less
than the completion time for completing the outstand-
ing processing request without the assist unit; and

assign the outstanding processing request to an available
processing core when the assist unit completion time is
greater than the completion time for completing the
outstanding processing request without the assist unit.

14. The system of claim 13, wherein the management
software compiles a list of at least one pending processing
request that has not been completed and a list of at least one
active processing request that is actively being processed by
the available assist unit.

15. The system of claim 14, wherein determining the
assist completion time for the at least one pending process-
ing request comprises calculating a total assist unit comple-
tion time, wherein the total assist unit completion time
comprises:

a remaining assist unit completion time for completing the
at least one active request by the available assist unit,
and

a pending assist unit completion time for completing the
at least one pending processing request by the available
assist unit.

16. The system of claim 13, wherein the processing
requests have function types and function sizes and the
management software calculates the assist unit completion
time and the completion time for completing the outstanding
processing request without the assist unit based on the
function types and the function sizes.

17. The system of claim 13, wherein the management
software is compatible with existing software used by the
plurality of processing cores.

18. The system of claim 13, wherein the management
software comprises a counter that tracks the assist unit
completion time and the completion time for completing the
outstanding processing request without the assist unit.

#* #* #* #* #*

